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Suggested Solution to Assignment 3

Exercise 3.1

1. By the method of odd extension or formula (6), we have

e y)2 (z+1)?
u(x,t) —e  akt Je Ydy
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where &rf(z) is defined by

2. Let v(z,t) = u(x,t) — 1. Then v(x,t) will satisfy
v = kvgg, v(z,0) =—1, v(0,t) =0.

Hence,
1 © (@-p)? (z+y)?
v(z,t) = — e dkt —e  akt |d
(@) 47rk:t/0 [ Iy
T
=—&r .
f( Tkt)
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3. By the method of even reflection, we can translate the original problem for the half-line to the problem
for the whole line and then using the formula for the latter to obtain

w(m,t f(x y)?/4kt _’_ef(x+y) Mkt](f)(y)dy

varkt

For the details, please see your textbook. O

4. (a) With the rule for differentiation under an integral sign and the property of source function, v(z,t)
satisfies
v = kUgg, v(x,0) = f(z).
(b) By (a), w(z,t) satisfies
w = kwge, w(z,0) = f'(x) — 2f(x).

(c) By the definition of f,
1— 2z, x > 0;
-1 -2z, x<0.

fi(x) = 2f(x) = {

, ) -1+2z, x>0
flza) = 2f(=e) = {1 + 2z, z <0.
= —[f'(z) —2f(2)].
Hence, f/'(z) — 2f(z) is an odd function.
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(d) Since w(z,0) is an odd function, using the conclusion in Exercise 2.4.11, w is an odd function of x.

(e) By (a), v(z,t) satisfies DE and IC. By (d), v(x,t) satisfies BC. Thus we have proved that v(z,?)
satisfies (1) for x > 0. Hence, using the assumption for the uniqueness, the solution of (1) is given
by

u(z,t) = (=% /M £ () dy,

=

Y, y > 05
— O
1) {y +1, y<O.

where

Exercise 3.2

1. By the method of even extension, we have

x+ct
v(x, t) = %[ﬁbeven(x + Ct) + (beven(x - Ct)] + 1/ weven(y)dy

2c ot

_ %W(ﬂf +ct) + ¢z — ct)] + 5. fw+0t y)dy, T > ct;
3oz +ct) + o~z + ct)] + 5] O‘HCW( )y + [T p(y)dy), 0< < ct.

It is similar for ¢t < 0.

2. We can do this problem by even extension, then we obtain the solution to this problem wu(x,t) =

216 ;Jrc(f Yext (8)ds, where Yexi(s) = V for a < s < 2a, —2a < s < —a, and zero otherwise. Substi-

tute t = 0,a/c,3a/2¢,2a/c,3a/c into this formula and we omit it. O

3. If the string is fixed at the end z = 0, then we have the homogeneous Dirichlet condition u(0,¢) = 0.
Therefore the vibrations u(z,t) of the string for ¢ > 0 is given the odd reflection formula with initial date
f(z) and cf’(z), that is,

(2.1) = flx +ct) x> ct
= flx+ect)— flct—x) O0<z<ct

For details see the formulas (1)-(3) in section 3.2 of the book. O

5. Using the odd reflection method or formulas(2) and (3), we have

1, > 2lt|;
u(a:,t)—{ x> 2

0, x < 2|t|.
Hence the singularity is on the lines x = 2[¢|. O

6. Since u(0,t) + auy,(0,t) = 0, we can consider the function w(x,t) defined on the whole line

u(x,t) + aug(z,t) x > 0;
w(z,t) =<0, x = 0;
—u(—x,t) — aug(—x,t), t<O0.

Here, u;(0,t) + au;(0,t) = 0 enables w(z,t) is continuous and differentiable around = = 0. Since w(z,t)
is a linear combination of derivatives of u(z,t), it also satisfies the wave equation, that is,

2
Wit — C Wy
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By direct calculation,

V, x > 0;
w(z,0) = p(x) =<0, x =0
-V, z < 0.

we(z,0) = up(x,0) + augy(z,0) = c2um(x, 0) + aug(x,0)
= ?02,(0) + ad,(V) = 0.

Then the d’Alembert’s formula implies

V, x> ct,

) V/2, x=ct,
w(z,t) = 5[(;5(:1: +ct)+ oz —ct))] =40, —ct<xz<ct,
—V/2 z=—ct,
-V oz < —ct

Let ¢(s) = u(z + as,t + s), and then ¢'(s) = wp + au, = w(x + as,t + s), o(—t) = u(z — at,0) = 0 and
©(0) = u(z,t). Hence,
0
u(zx,t) = / w(zx + as,t + s)ds.

—t

Denote A = {(l‘l,tl);o <t < t} = {(xo,t());wo = cty,0 <ty < t} N {(xo,to);a} — Ty = a(t — to),o <t <
t}(i.e. (x1,%1) is the point where the line xg = cto intersects the line x — z9 = a(t — tp) when 0 < tg < t)
and B = {(.%'Q,tg);o <t < t} = {(xo,to);.%'o = —Cto,o <t < t}ﬂ {(xo,to);x—m’o = a(t—t()),o <t < t}.

Hence, when z > at, A = B = () and
0
u(z,t) = / Vds =Vt
—t

at — x at — x

when ct < x < at, t1 = , to = and
a—c a+c

0 to—t - t— 20z — (a® + A)t
u(m,t):/ Vds+/ Vs =y I yatmr_y2ar - (@B
t—t _t a—c a+c a* —c

at — x

when 0 <z <ct, A=0,ty =
a+c

and

to—t _
u(z,t) = / —Vds = —Vat+ x‘
—t a C

Exercise 3.3

1. Using the method of reflection and the formula (2) in Section 3.3, we have
u(x,t) / S(z —y,t)Poad(y dy—i—/ / Sz —y,t —$) foad(y, s)dyds
= [ 18— w0 = Sta -+ 0oty
+ /Ot /OOO[S(:B —y,t—s)—S(x+y,t—s)|f(y,s)dyds,
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where foq4(y, s) is the odd extension of f(y,s) w.r.t the variable y, and

1 «2
e 4kt t> 0. O
vVarkt

2. Let V(z,t) = v(x,t) — h(t). Then V (z,t) will satisfy

S(x,t) =

Vi — kVyy = f(z,t) — B/ (1) for0<oz<oo, 0<t< o0,

Using the result above, we have

Vi, t) = /0 T[S — 1) — Sz + 9, 0)][6y) — h(O))dy

t ')
+ /0 /0 S(z—yot—s)— S(z+y.t —9)][f (g, 5) — K (D)]dyds,

M%U=h@%ﬂémww—%ﬂ—5@+ﬂJMMw—h®Ww

+/0 /0°°[S(x —y,t—s)—S(x+y,t—s)[f(y,s) — b (t)]dyds,

where foq4(y, s) and S(z,t) are shown above. d
3. Let W(z,t) = w(x,t) — zh(t). Then W (x,t) will satisfy
Wy — kW = —xh () for0O<z<oo, 0<t< oo,

W,(0,t) =0, W(x,0) = ¢(x) — zh(0).

Using the method of reflection of even functions, we have

5U t / S x—y, ¢even dy+/ / S 37_97 )feven(ya )dde

= [ 18t = )+ SCa -+ o) ~ (Ol
/ / (z—y,t—s)+ S(x+y,t—s)|[—yh'(s)dyds,
w(z,t) = W(z,t) + zh(t),

where feven(y, s) is the even extension of f(y,s) in the variable y, and
1

2

eir, t>0. 0O

S(x,t) = T

Exercise 3.4

1. By the Theorem 1 in Section 3.4, we have

z+c(t—s) .Tt?)
u(z,t) = //ysdyds—// ysdyds:?. O
c(t—s)
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2. By the Theorem 1 in Section 3.4, we have

1 x+c(t—s)
u(x,t) = 20// W dyds = / / ( e dyds
z—c(t—s)
A

0T eact + e—act
=< a?c? < 2 ) > a7l O
%t2, a=0.

3. By the Theorem 1 in Section 3.4, we have

1 xr+ct 1

u(z,t) = =[sin(x + ct) + sin(z — ct)] + / (14 s)ds + — // cosy dyds
2 2c T—ct 2c

A

= sinz cos(ct) + (v + 1)t + c% cos x[1 — cos(ct)]. O
4. Let u; be the solution of the wave equation
U = gy + f, u(z,0) =0, u(x,0) =0,
us be the solution of the wave equation
Uy = Py, u(z,0) = ¢(z), u(z,0) =0,
ug be the solution of the wave equation

U = gy, u(x,0) =0, u(x,0) = (x).

Then u = uy +uo +ug is the unique solution for the original problem since the equation and conditions are
linear and the uniqueness of the wave equation. Note that w1, ug, us are terms for f, ¢ and ¥ respectively.
Hence the solution of the original problem can be written in the sum of three terms, one each for f, ¢

and . O

5. We write u(z,t) = o fo i) vHet=es £y s)dyds. Then by direct calculation, we have

r— ct+cs
1 t

Uy = —
v 260

1 c

[f(x+ct—cs)— f(x—ct+ cs)|ds, ug, = ;/t[f/(x—i—ct— cs) — f'(x — ct + cs)]ds,
cJo

t t
Ut:/ [f(z+ct —cs) + f(z — ct + cs)]ds, Utth($)+/ [f'(x +ct — cs) = f'(w — ct + cs)]ds.
0 0

2
Hence, we have

2

2
U = C Uy + f

u(zx,0) / / fly,s)dyds =0,
20 x+cs

/ [f(x —cs)+ f(z+cs)]ds = 0. O

w(w.0)=; [

8. For arbitrary C? function v, .71 = = et (y)dy. We have

2c Jx—ct

(Sl = S @+ ct) = (& = )] = PLS Y]z

SO0 = 5 [ 9y =0, AOW] = 10(@) +9(2)] = v(a).

So we conclude that
Ty — L =0, (0)=0, #0)=1. O
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9. According to the definition of u(z,t) and the result above, we have

up = /ytt—s s)ds:/o St — s)f(s)ds,

uy = FO)F (1) + /0 it — $)f(s)ds = £ (1) + /0 Fialt — ) f(s)ds,

Ugy = /0 yxw(t - S)f(s)ds

So we conclude that
0 0
Ut — CQUmx = f, u(l’,O) = / y(_s)f(s)ds =0, ut(o) = / %(—S)f(s)ds =0 O
0 0

12. For xg > cty > 0, integrate over A, where A is the region bounded by three lines
Lo = [(xo — cto,0), (x0 + cto,0)], L1 = [(x0 + cto,0), (w0, t0)], L2 = [(w0, o), (0 — cto,0)]

(see figure 6 in Page 76), by Green’s theorem, we have

// fdzxdt = // Uy — Cugpdrdt = / —Puydt — updx
N N Lo+L1+Le2

On Lg,dt = 0,u(x fL —Ruydt — ugdy = — [Tt P(z)dx

xo—cto

On Ly,x+ct = xg —l— cto —> dx + cdt =0, —uydt — wpdxr = cugdr + cupdt = cdu.
/ = c/ du = cu(xg,ty) — cod(xo + cto)
L L

By the same reasoning, [; = —c [, du = —c¢(zo — cty) + cu(zo, t9). Summing the three terms, we have
for

1 1 x+ct 1
u(z,t) = =[p(x + ct) + ¢z — ct)] + — / P+ / 1, if x >ct > 0. (1)
2 2¢ Jo_et 2c
A
For zy < cty, integrate over A’, where A’ is the reflected region bounded by four lines
Lo = [(cto — 70, 0), (x0 + cto, 0)], L1 = [(z0 + cto,0), (zo, t0)],

Ly = [(x0,t0), (0,t0 — x0/c)], L3 =[(0,to — zo/c), (cto — x0,0)]

(see figure 2 in Page 72), by Green’s theorem, we have

// fdzxdt = // Uy — Cugpdrdt = / —Puydt — updx
x N Lo+Li+Lo+L3

On Ly, dt = 0,us(x) = ¢(x). Hence, we have

xo+cto
/ —Puydt — uydr = —/ Y(x)de,
Lo

cto—xo

/ =c [ du= cu(zg,to) — chd(zo + cto),

L L

/ = —c/ du = —ch(tg — zo/c) + cu(xo, to),
Lo Lo

/ = c/ du = cp(cty — xg) — ch(tg — xo/c).
L3 Ls
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Summing the four terms, we have
1 1 x+ct
u(m,t):[(Z)(a:—i-ct)—gb(ct—a:)]—/ 1/1+ht—— //f1f0<m<ct. (2)
2 2c ct—x

13. By the result above, f =0, ¢(z) =z, ¥(x) = 0 and h(t) = t? imply that

Loz + ct) + ¢(z — ct)] +21Cf”“z/;+2cfff > ct>0
u(x,t) = e
1) %[Qb(x"’_d)_(b(d—:z)] 210 ct+xt¢+h(t_g +2icfff O<ax<ct
A/
>
_ T rz>ct>0 0
r4+ (-2 0<z<ct
14. Let v(z,t) = u(x,t) — xk(t). Then v satisfies
Vit — gy = —xk" (1),

v(z,0) = —xk(0), vi(z,0) = —zk’(0), v(0,t) = 0.
Then v,(0,t) = 0 enables us to have an even extension. So the solution of v is

x+ct

v(:c, t) = %[¢even(w + Ct) + (beven(x - Ct)] + 210/ Yeven + / Jeven,

—ct

where Geven, Yeven and feven are the even extensions of ¢, 1 and f respectively. Finally, we can have

w— {O x > ct; 0
g x/ck‘(s)ds x < ct.
Exercise 3.5
1. Since ) o
\/ZE/O e P /4dp: 1/2,
we have

‘\/}w /OO e P (x + Vitp)dp — l<25(ac+)‘ = \/}w /0°° e P o(x + Vhtp) — d(a+)|dp

1 e P b2 x Lo e P p(x — &z
T e ot Vi) — ot i+ [ o+ Vi) - oo

For Ve > 0, choose pg large enough such that fp? e P’/ 4dp is small enough and then

T e e + Vi) — dat)ldp < C mazld] [ e dp <
V4 Do o 2

after this, we can choose t is small enough such that
¢z + VEtp) — p(a+)] < e

and then
1

Po . _
\/E/o e P/ p(x + VEtp) — plat)|dp < <\/E/o e P /4dp> . %

7
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Hence,

\/ZE/ *p/4¢a:+\ﬁp)dp—> ¢(x+) as t \ 0;

similarly we can prove that
L /—00 e_p2/4qz5(x + Vktp) dp — —lgb(az—) as t N\, 0. O
Vi Jo 2

2. Since ¢(x) is bounded, by the same argument in Theorem 1, we can show that (1) is an infinitely differ-
entiable solution for ¢ > 0. In addition, by Exercise 1,

}{%u(x 1) = ;[gb(ﬁ) + ¢(x—)]



